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ABSTRACT   

In-situ sampling, characterization and quantification of colloidal aggregates and flocs in ambient water is complex but 
needed in order to understand their role in development and maintenance of moving fluid muds, muck, bottom boundary 
lutocline layers and nephelometric interfaces in aquatic systems. These bottom boundary interfaces and associated 
processes contribute to sedimentation, particle deposition and resuspension of total particulate matter and associated 
nutrients. Increasing the scientific understanding of the above requires advances in environmental sensing 
instrumentation (passive and active) to successfully understand these aquatic interfaces. Standalone in-situ sensors that 
automatically perform multiple steps including sampling, separation, and detection have the potential to greatly advance 
analytical science. A new in-situ multispectral optical camera system for environmental monitoring and surveillance of 
delicate flocs and related aggregate structures is described. Results of the system show that flocs - 0.1 mm –10.2 mm 
diameter (mean diameter of 2.77 mm), with a variance of 5.952 mm and a median effective cross-section area of 30 mm2 

can be measured using the passive multispectral optical imaging system. The system is lightweight, compact and suitable 
for shallow or deep water deployment. When combined with fixed station acoustic echogram instruments, nephelometric 
(turbidity) waves can be easily observed. Time sequential analysis of imagery allows the system to be used as an optical 
particle velocimetry system (OPVS). Initial shallow water testing resulted in Lagrangian particle velocities of 0.3 to 3 
cm sec-1 to be measured. Similar results were obtained from an acoustic velocity current meter (MAVS3) and a Marsh 
McBirney 201D electromagnetic current meters.  When combined with results from direct methods using sondes for 
estimating sediment mass fluxes, the combined systems provide data necessary for sediment and water quality modeling. 
The new optical sensor system will help address analytical needs reported in past studies and provides a new standard 
method and protocol for measuring the movement of sediment and particulates in the aquatic bottom boundary layers. 
 
Key Words: flocs, colloidal aggregates, multispectral, sondes, subsurface sensing, acoustic imaging, optical imaging, 
hyperspectral, lagoons, estuaries, water quality, water monitoring, coastal ocean, environmental surveillance, optical 
monitoring, shallow water, particle velocimetry, turbidity, video imaging, remote sensing, dredging, fluid mud, muck, 
noncontact sensing, video analysis, subsurface probes. 
 

1. INTRODUCTION & BACKGROUND 
Background 
 
Marine flocs and colloidal aggregates has been previously studied by Gibbs, 1983 where he demonstrated flocs and 
coagulation of minerals begin at salinities as low as 0.5 to 1 practical salinity units (psu) or ppt in natural waters. In 1970 
Gibbs published his paper concerning world water chemistry and demonstrated the important role of how salts and 
minerals in water from different origins can be described. His basic model and research demonstrated the importance of 
natural occurring flocs and colloidal aggregates in not only marine but freshwater systems, where salts and minerals in 
rainwater contribute to the coagulation (flocculation) process that begins in near surface waters after rainfall events. In-
situ sampling of flocs cannot be accomplished with traditional sampling techniques such as Niskin bottles3 or pumped 
samples. These fragile aggregates are best considered to be similar to “snowflakes”. They break under the influence of 
rapid pressure changes and water movement that accompanies Niskin water samplers and the pumping of water.  
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Thus, those interested in studying these naturally occurring precursors to the buildup of fine grain mud and muck in 
rivers and estuaries have resorted to various imaging or optical methods and associated image processing techniques that 
make use of multichannel camera systems4,5. An advantage of imaging systems includes the ability to characterize the 
size and shapes of the marine snow - colloidal particle aggregates5. Flocs imaged in water from water environments have 
been shown to have size ranges from ~ 0.1 mm to over 2 mm5. In many cases micro flocs coagulate, consolidate, and 
interact in a flocculation process that produces larger flocs and colloidal aggregates (several loosely combined flocs). 
The result is the creation of mixed sediment flocs and suspensions - a combination of organic matter and small inorganic 
particulates. These aggregates can remain in suspension until they settle to the bottom boundary lutocline. These settled 
mud particles in aquatic systems can be easily resuspended and entrained back into the water column before natural 
dewatering of the surface muds occurs. Once natural dewatering occurs, the individual flocs and aggregates can no 
longer be distinguished and become a major component of cohesive bottom sediments. The dewatering or consolidation 
rates of the flocs, their deposition, and erosion can depend upon the electrostatic charges, biogenic coatings, salinity, 
minerals (in rain and freshwater), turbulent shear stresses, velocity gradients in the bottom water, and differential 
settling6,7,8. Sediments remobilized from the bed and “algae” flocculate and form biotic-abiotic aggregates9. These 
aggregate characteristics change with algae type and environmental conditions such as turbidity, the type of sediment 
(anoxic or oxic), minerals, and the structure of the fine sediment particles and algal species. The resulting flocculation 
and aggregates in turn affects the underwater light climatology and light obscuration in the bottom boundary layer9 
within submerged vegetation canopies. The spectrum of this underwater light field is critical to the functioning of 
ecologically important submerged vascular plants. Verspagen, et al., 2006 showed aggregation with clay particles caused 
sedimentation of Microcystis spp. cyanobacteria species, thus demonstrating the interplay between these sediment 
particle movements and population dynamics of Microcystis strains10 with varying “stickiness”.  
 
In-situ collections of colloidal aggregates and flocs can be made using different sediment traps and passive sondes11,12. In 
fact, they are the only means that allow researchers to collect direct in-situ fluxes (g m2 day-1) of the horizontal and 
vertical (sinking or resuspended) aquatic snow13,14,15,16 that makes fluid mud and muck. Laboratory floc motion (stirrers) 
and movement observations and recirculating annular flume experiments provide valuable flocculation process data5. 
The new in-situ multispectral imaging system described in detail below also provides in-situ particle motion in terms of 
their horizontal floc movement in the bottom boundary layer. In essence, it is also an “optical particle velocimetry 
system” (POVS) that also provides individual size information concerning micro flocs and colloidal aggregates. 
 

2. TECHNIQUES & METHODS 
 
2.1 Study areas for testing the floc & particle velocimetry system (OPVS) 
 
Figure 1 shows a satellite image of the study for testing. The locations are in Indian River Lagoon, Florida where four 
transects and stations for in-situ data and imagery (surface & subsurface) was collected near Sebastian Inlet (middle 
image). Transects across the Intracoastal Waterway (ICW) were selected based upon a monitoring project related to a 
recent maintenance dredging project funded by the Florida Inland Navigation District (FIND). Data from transect 2 are 
reported in this paper. The second area is in Palm Bay (right image). Three stations located within the highlighted box 
were sampled for flocs and measurements of muck depths using a sludge judge. The Palm Bay area is shown using a 
recent multispectral (R,G,B) Pleiades satellite image with 2 m spatial resolution that was acquired on June 22, 2015.  
 
2.2 Design characteristics of the new multispectral optical particle velocimetry system (OPVS) 
 
The in-situ camera system can be oriented in a vertical or horizontal position with a digital multispectral camera that 
views an encased glass optical waveguide. The waveguide is approximately 20 cm in dimeter with approximately 100 
light emitting diodes (LEDs) secured to the edge of the glass plate as depicted in Figure 2. The light from the LEDs enter 
the glass light guide and produce a uniform “upwelling” light field that is viewed by a digital multispectral camera. The 
glass surface can be coated with a white antireflective material in order to obtain a desired spectral response. A 
multispectral digital camera or a hyperspectral imaging camera is mounted in a manner to view the glass plate as 
depicted in Figure 3. The cameras are carefully focused to view particles passing across (but very close) to the glass 
plate. Figure 3 shows the internal components for the subsurface illumination system located within a watertight case. 
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related water quality and sediment transport modeling18,19,20,21  under different water wave conditions that influence the 
bottom boundary layer21,22,32,24,25,26,27.  
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